Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling
2016.03.18Zhu, J., Shang, Y., & Zhang, M. (2016). Nature Reviews Neuroscience, 17(4), 209-223.
Membrane-associated guanylate kinases (MAGUKs) are a family of scaffold proteins that are highly enriched in synapses and are responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Mutations in genes encoding MAGUKs and their interacting proteins can cause a broad spectrum of human psychiatric disorders. Here, we review MAGUK-mediated synaptic protein complex formation and regulation by focusing on findings from recent biochemical and structural investigations. These mechanistic-based studies show that the formation of MAGUK-organized complexes is often directly regulated by protein phosphorylation, suggesting a close connection between neuronal activity and the assembly of dynamic protein complexes in synapses.
- Recommend
-
2024-06-15
AIDA-1/ANKS1B Binds to the SynGAP Family RasGAPs with High Affinity and Specificity.
-
Demixing is a default process for biological condensates formed via phase separation
-
Short-distance vesicle transport via phase separation.
-
Phosphorylation-dependent membraneless organelle fusion and fission illustrated by postsynaptic density assemblies.
-
2023-10-03
Ca2+-induced release of IQSEC2/BRAG1 autoinhibition under physiological and pathological conditions