Inhibitory postsynaptic density from the lens of phase separation
2022.02.22Bai, G., & Zhang, M. (2022). Oxford Open Neuroscience, 1
To faithfully transmit and decode signals released from presynaptic termini, postsynaptic compartments of neuronal synapses deploy hundreds of various proteins. In addition to distinct sets of proteins, excitatory and inhibitory postsynaptic apparatuses display very different organization features and regulatory properties. Decades of extensive studies have generated a wealth of knowledge on the molecular composition, assembly architecture and activity-dependent regulatory mechanisms of excitatory postsynaptic compartments. In comparison, our understanding of the inhibitory postsynaptic apparatus trails behind. Recent studies have demonstrated that phase separation is a new paradigm underlying the formation and plasticity of both excitatory and inhibitory postsynaptic molecular assemblies. In this review, we discuss molecular composition, organizational and regulatory features of inhibitory postsynaptic densities through the lens of the phase separation concept and in comparison with the excitatory postsynaptic densities.
- Recommend
-
2024-06-15
AIDA-1/ANKS1B Binds to the SynGAP Family RasGAPs with High Affinity and Specificity.
-
Demixing is a default process for biological condensates formed via phase separation
-
Short-distance vesicle transport via phase separation.
-
Phosphorylation-dependent membraneless organelle fusion and fission illustrated by postsynaptic density assemblies.
-
2023-10-03
Ca2+-induced release of IQSEC2/BRAG1 autoinhibition under physiological and pathological conditions