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A neuronal synapse is formed by juxtaposition of a transmitter
releasing presynaptic bouton of one neuron with a transmitter
receiving postsynaptic compartment such as a spine protru-
sion of another neuron. Each presynaptic bouton and post-
synaptic spine, though very small in their volumes already, are
further compartmentalized to micro-/nano-domains with
distinct molecular organizations and synaptic functions. This
review summarizes studies in recent years demonstrating that
multivalent protein—protein interaction-induced phase separa-
tion underlies formation and coexistence of multiple distinct
molecular condensates within tiny synapses. In post-synapses
where synaptic compartmentalization via phase separation
was first demonstrated, phase separation allows clustering of
transmitter receptors into distinct nanodomains and renders
postsynaptic densities to be regulated by synaptic stimulation
signals for plasticity. In pre-synapses, such phase separation-
mediated synaptic condensates formation allows SVs to be
stored as distinct pools and directly transported for activity-
induced transmitter release.
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Introduction

Neurons are highly polarized and extremely compart-
mentalized. Such unique architectures of neurons are the
foundation for forming diverse and precisely controlled
neuronal networks responsible for essentially all physio-
logical processes in animals including humans. One of the

most basic steps for the establishment of a neuronal
network is formation of a synapse, a micron-sized multi-
compartment organization assembled via juxtaposed in-
teractions between a signal-transmitting axonal terminal
bouton of one neuron and a size-matched, signal-
receiving dendritic compartment of another neuron (or a
signal receiving compartment in target cells in peripheral
nervous systems). Although the volume of a synapse is
small (~1—-2 ],Lm3), it could be further divided into at
least three functional compartments: presynaptic
bouton, postsynaptic dendrite and synaptic cleft.

Both pre- and post-synaptic termini are further sub-
compartmentalized. Each presynaptic bouton contains
many synaptic vesicles (SVs) clustered together and a
protein-dense region known as the active zone (AZ)
right beneath plasma membrane (PM). AZ is required
for tethering, docking, priming, and fusion of SVs [1].
Under electron microscope (EM), AZ appears as an
clectron-dense zone and only a few SVs are directly
attached to AZ. The majority of SVs are clustered as a
distinct pool that is ~100 nm away from AZ. In the
postsynaptic side, a highly electron-dense zone known
as the postsynaptic density (PSD) is obvious under EM
for both excitatory and inhibitory synapses from the
central nervous system. The PSD of excitatory synapses
(ePSD) has a thickness of 20—50 nm and the PSD of
inhibitory synapses (iPSD) has a thickness of 10—15 nm
[2]. A clear boundary between the PSD and spine
cytoplasm exists as viewed from the EM micrographs of
synapses. The ePSD appears to be further compart-
mentalized with a more electron-dense layer known as
the PSD core right beneath the postsynaptic PM and a
relatively less electron-dense layer further away from
PM and facing spine cytoplasm (this layer is referred to
as the PSD pallium) [3]. Such highly compartmental-
ized organizations of each synapse are not static.
Instead, molecular constituents can exchange between
synaptic sub-compartments in responses to synaptic
stimulations [3].

The discovery of liquid—liquid phase separation of
mixtures of two abundant PSD proteins, PSD-95 and
SynGAPal, hinted that phase separation could serve as
a mechanism for condensed PSD assembly formation
[4]. Accumulating studies in recent years have further
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demonstrated that scaffold proteins at PSDs and pre-
synaptic boutons, via multivalent interactions among
these proteins, could undergo phase separation to form
highly condensed compartments capable of enriching
functional constituents such as neurotransmitter re-
ceptors, ion channels, enzymes, SVs, etc (for details
please refer to Refs. [4—11]). These findings begin to
offer a new angle for understanding synaptic organiza-
tion and function. In this short review, we focus on roles
of phase separation in organizing multiple sub-
compartments in PSDs and presynaptic boutons.

Segregation of distinct synaptic
compartments via phase separation: ePSD
versus iPSD

Balance of excitatory and inhibitory synaptic input/
output is vitally important for neuronal circuit develop-
ment and for proper functions of adult brains (Figure 1a).
For individual neurons, the amount and types of synapses
formed determine the signal input/output. For example,
the majority of synapses (~80 %) formed by cortical or
hippocampal pyramidal neurons are excitatory in nature
and are formed along dendrites as bulbous protrusions
with head diameters of <1 wm [12]. The rest ~20 % of
synapses are inhibitory in nature and form on cell soma,
dendrites, and axon initial segments. The segregation of
excitatory and inhibitory signals into distinct sub-
compartments in each neuron provides a foundation for
E/l balance. A constrained ratio of ePSD/iPSD across
different dendritic branches or along one branch has been
observed in pyramidal neurons, suggesting a structural
basis for E/I balance [13,14]. E/I imbalance is viewed as a
major mechanism underlying various neurological and
neurodegenerative disorders [15,16]. The location of
inhibitory synapses has a profound effect on controlling
neuronal excitability. The two extremes are those located
on the axon initial segment and those located on den-
dritic spines. The former controls the overall firing of the
neuron. The latter will selectively determine the effect
of a single excitatory input by local shunting [17,18].

In pyramidal neurons, excitatory synapses are mainly
localized in dendritic spine protrusions and thus are
naturally segregated from inhibitory synapses that are
chiefly localized on dendritic shafts or cell soma
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(Figure 1b). Nonetheless, a large proportion of inhibi-
tory synapses are co-innervated onto the excitatory
spine protrusions forming so called dually innervated
spines (DiSs), which can account for ~10 % of total
inhibitory synapses in certain brain regions (Figure Ic
and d) [13,19,20]. The anatomic structures of DiSs,
their postsynaptic compartments, in particular, are
interesting and intriguing (Figure 1c and d). Each of the
submicron-sized postsynaptic protrusions is contacted
by two presynaptic boutons, forming an ePSD and an
iPSD. Electron microscopic and fluorescence micro-
scopic studies have revealed that the ePSD and iPSD in
each DiS form electron-dense/condensed and well-
separated sub-compartments within each submicron-
sized spine protrusion (Figure 1c) [19,21]. It is well
established that ePSD and iPSD are formed by distinct
sets of scaffold proteins capable of concentrating
glutamate receptors and GABA/Glycine receptors
(GABAAR/GIyR), respectively, into dense clusters to
conduct opposite electric currents [22—24]. Remark-
ably, the dense ePSD and iPSD molecular assemblies do
not disperse and do not mix with each other despite the
fact that they share a common dilute solution, which is
the tiny spine cytoplasm of each DiS. In interneurons,
ePSD and iPSD are densely distributed and well
segregated with each other along dendrites (Figure 1b)
[25]. The molecular basis governing spatial segregation
of the ePSD and iPSD condensates in the nervous
system is unclear until a very recent study [26].

Previous biochemical and proteomic studies identified
the major molecular components and their interaction
networks within ePSDs and iPSDs, respectively [23,24].
Mixtures of main ePSD or iPSD scaffold proteins
in vitro led to the spontaneous formation of ePSD or
iPSD condensate via phase separation [5,9]. Mutations
of PSD proteins found in patients with brain disorders
can perturb PSD condensate formation. For example,
mutations in the Shank Sterile alpha motif (SAM)
domain found in autism patients would disrupt or
decrease the polymerization of Shank and thus disturb
its phase separation capacity [27—29]. The G375D
mutants of Gephyrin found in a patient with Dravet-like
syndrome is defective in phase separation and iPSD
assembly [30]. Zhu et al. further found that mixing the

Phase separation-mediated segregation of ePSD from iPSD.

(a) Schematic diagram showing the wiring of excitatory a pyramidal neuron (purple cell) and an inhibitory interneuron (blue cell). (b) The subcellular
localization of E/I synapses differs in pyramidal neurons (left panel) and interneurons (right panel). In pyramidal neurons, E synapses are localized to
spines separated with | synapses on shafts. But in interneurons both E and | synapses are on dendritic shafts. (¢) EM (top panel) and fluorescence
images (bottom panel) showing the organization of e/iPSDs within DiSs. In the top panel, the black arrow indicates an ePSD, and the white arrows indicate
iPSDs. Scale bar: 500 nm. In the bottom panel, the white arrowheads indicate DiSs. Scale bar: 1 um. (d) Schematic diagram of a DiS. (e) Demixed e/iPSD
compartments could be observed in test tubes upon mixing of major e/iPSD components. Scale bar: 5 um. (f) Super-resolution image of demixed e/iPSD
compartments on a membrane surface (left panel) and zoom-in view of resolved molecular trajectories of e/iPSD proteins (right panel). Scale bar: 1 pm.
(g) Demixed e/iPSD compartments are supported by distinct percolated molecular networks trapping ePSD and iPSD proteins in each compartment.
c top panel was adapted from Ref. [21].

¢ bottom panel was adapted from Ref. [19].

e—f was modified from Ref. [26].

All schemes in this review are drawn using BioRender.com.

www.sciencedirect.com Current Opinion in Neurobiology 2025, 90:102975


http://BioRender.com
www.sciencedirect.com/science/journal/09594388

4 Developmental Neuroscience 2025

Figure 2
(a) Rewriting multivalent subsynaptic protein interactions in ePSDs
@ GIuN2B- @ PSD-95-SAPAP
CaMKlla assemble assemble
NMDAR
avear 9§ i
SynGAF’¢ PSD-95+ ?%
al
GKAP+
Shank gj\ﬂmw\/ L
CaMKlla
Homer+
¢ ®shank-CaMKlla @ PSD-95-SynGAPa(1
disassemble disassemble
(b) Reorganizing multiple synaptic sub-compartments in ePSDs
Extrasynaptic Synaptic Extrasynaptic AMPAR NMDAR AMPAR
AMPAR AMPAR/NMDAR AMPAR nanocluster nanocluster nanocluster
SSD Thicker
ore Denser
PSD PSD
Pallium
Cyto- Enlarged
skeleton Cytoskeleton
Basal LTP
Current Opinion in Neurobiology

Multiple synaptic sub-compartments in ePSDs in the basal state and during LTP.

(a) ePSDs proteins are organized via multivalent protein—protein interactions and occupy certain synaptic sub-compartments forming layered structures
(left panel). During LTP, the activation of CaMKlIla could induce dissociation of the Shank- CaMKlla. complex and translocation of CaMKlla to the PSD
core. Active CaMKlla would stably interact with the cytoplasmic tail of GIuUN2B. Active CaMKlla. can phosphorylate SAPAP and promote its binding to
PSD-95. Besides, phosphorylation of SynGAPa1 leads to its dispersion from the PSD core. (b) In the basal state, the compartments composed of PSD-
95/SynGAPa.1/AMPAR and SAPAP/Shank/Homer are separated into distinct PSD core/pallium. Formation of the PSD-95/SynGAPa.1 compartment in-
hibits the clustering of synaptic AMPARs. During LTP, rewriting of synaptic protein interactome leads to a reorganization of synaptic sub-compartments in
ePSDs. Phosphorylation of SAPAP causes merging of the pallium with the PSD core forming thicker and denser PSDs. Dispersion of PSD-95/SynGAPa.1
compartment promotes formation of the PSD-95/AMPAR nanoclusters. Active CaMKIlla. translocate to the PSD core and phase separates with GIuUN2B to

form NMDAR-containing nano-signaling compartments.
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e¢PSD and iPSD proteins together led to autonomous
formation of two separate phases of condensates corre-
sponding to ePSD and iPSD condensates, suggesting
that segregation of ePSD from iPSD is an intrinsic
property of the two types of condensates (Figure 1le)
[26]. The G375D mutants of Gephyrin could also
disrupt the demixing of ePSD with iPSD. Remarkably,
the ePSD and iPSD condensates remained demixed
even when Gephyrin and PSD-95 were forced to bind to
cach other by fusing a PSD-95 intrabody called PSD-
95.FingR [31] to Gephyrin both in vitro and in living
neurons, revealing that the demixed ePSD and iPSD
condensates are extremely stable and can resist the
binding force with nanomolar affinities [26]. This study
also indicates that, in general, distinct biological con-
densates formed in cells have intrinsic tendencies to be
segregated. 'Thus, cells can contain numerous
membraneless organelles formed by phase separation in
different sub-cellular regions.

What might be the molecular mechanism underlying the
spontaneous segregation of the ePSD and iPSD con-
densates? Zhu et al. analyzed the diffusion behaviors of
ePSD protein Stg and iPSD protein GIyR in the
reconstituted condensates by single-molecule tracking
(Figure 1f) [26]. They discovered that PSD proteins in
the condensed phase do not follow the free diffusion law
for molecules in homogeneous solutions. Instead, each
of these proteins continuously switches between mobile
states and confined states, an observation in line with
previous studies showing that both GlyR and AMPAR
could be trapped in dense sub-synaptic nanodomains
with very low mobilities in living neurons (Figure 1f)
[32,33]. The existence of confined states with
extremely low diffusion rates for Stg or GlyR in the
ePSD and iPSD condensates can be explained by the
percolation theory upon condensate formation [29,34].
The strong and specific multivalent interactions among
ePSD or among iPSD proteins led to the formation of
system-spanning networks of ePSD and iPSD, respec-
tively (Figure 1g). Such percolated ePSD or iPSD mo-
lecular network is with extremely large molecular mass,
such that a client protein like Stg or GlyR in the network
bound state is essentially immobile. Mixing of ePSD
with iPSD would require breakup of at least one such
percolated molecular network with numerous interac-
tion nodes, a process that is extremely energy costly.
Therefore, even a forced interaction between Gephyrin
and PSD-95 with a nanomolar binding affinity cannot
mix the ePSD and iPSD together.

ePSD proteins are organized in layers
forming multiple synaptic sub-
compartments

Apart from the segregation of ePSD from iPSD, mole-
cules are assembled into discreate sub-compartments
even within a single PSD. For example, immunogold
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labeling coupled with EM studies showed that PSD-95
is concentrated in the more condensed PSD core region
close to the postsynaptic membrane with a median
distance of ~12 nm [24,35]. Shanks, another family of
the ePSD scaffold proteins are distributed in the PSD
pallium with a median distance of ~53 nm from the
postsynaptic plasma membrane [3,36]. The ePSD
scaffold proteins SAPAPs, which constitutively interact
with Shanks, are distributed in a narrow band with a
median distance of ~33 nm from the postsynaptic
membrane [3,36]. Super-resolution fluorescence imag-
ing studies also revealed that the ePSD proteins are
distributed in the order of NMDAR/AMPAR, PSD-95,
Shanks/CaMKIlIs, and Homers from the postsynaptic
plasma membranes to the spine cytosol (Figure 2a, left
panel) [37]. Biochemical reconstitution in test tubes
further showed that mixing of ePSD components leads
to two immiscible condensates: one enriching AMPAR/
PSD-95/SynGAPal, and the other containing SAPAP1/
Shank3/Homerl1 [38].

The distinct sub-synaptic ePSD condensates may play
unique roles in synaptic assembly and function
(Table 1). For example, the PSD pallium condensate
formed by SAPAP1/Shank3/Homer1 can recruit F-actin
and promote actin bundling, a process required for long-
term spine stabilization (Figure 2b left panel) [39]. The
PSD core condensate formed by AMPAR and PSD-95
supports clustering of AMPAR receptors in PSD [40].
Recently, it was shown that an increasing level of
SynGAPa1 can promote PSD-95/SynGAPa.1 condensate
formation and in return weaken AMPAR targeting in the
PSD core via competing with TARP for binding to PSD-
95 (Figure 2b left panel) [41]. Formation of PSD-95/
SynGAP condensates leads to the repulsion of
AMPARs from PSD-95 clusters, by which the anchoring
of AMPARs in the PSD is weakened.

Reorganization of ePSD sub-compartments
in response to synaptic signaling

The ePSDs, though quite condensed and stable, are
dynamically regulated by synaptic signals. For example,
ePSDs are known to enlarge during long-term potentia-
tion (LLTP) [3,42]. In cultured hippocampal neurons, the
PSD pallium becomes more electron-dense after depo-
larization with KT or treatment with glutamate, likely
due to the accumulation and redistribution of PSD pro-
teins [3,42]. Caz+/Ca1m0du1in—dependent kinase II «
(CaMKIIa) has long been viewed as one of the most
important proteins for synapse formation and plasticity
[43,44]. Under basal condition, CaMKIIol is mainly
localized in the PSD pallium revealed by immunogold-
EM (Figure 2a left panel) [42,45]. The inactive
CaMKIlIa would phase separate with the PSD pallium
protein Shank [10]. K- or glutamate-induced depolari-
zation of cultured hippocampal neurons causes trans-
location of CaMKIIa from the PSD pallium to the PSD
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core (Figure 2a right panel) [42,45]. Ca’"-induced acti-
vation of CaMKIlIa leads to direct binding of the kinase
to the cytoplasmic tail of GIuN2B, forming a CaMKIIa/
GluN2B nano-signaling compartment [10,11,46]. Inter-
estingly, the CaMKIIo/GluN2B condensate is physically
separated from the PSD-95/AMPAR condensate,
implying that phase separation-mediated synaptic sub-
compartmentalization may underlie the segregation of
AMPARs from NMDARs in the PSD and CaMKIIa plays
a structural role in addition to acting as a protein kinase
(Figure 2b right panel) [11,47]. Application of a CaMKII
inhibitory peptide to block the interaction between
CaMKII/GIuNZB could disrupt the segregated distribu-
tion of NMDAR and AMPAR in synapses [11,47]. Two
recent studies provided more direct evidence high-
lighting the structural role of CaMKIla in synaptic
transmission and plasticity via directly binding to
GluN2B [48,49]. Such Ca2+—regulatcd synaptic sub-
compartmentalization appears to be specific to
CaMKIIa, as CaMKIIf cannot undergo phase separation
with Shank3 or GluN2B, nor can rescue the defects of
CaMKIlIo/p double knock out [10,50]. Consistently,
CaMKIle, but not CaMKIIP, can rescue the synaptic
transmission and plasticity defects of neurons in the
CaMKIIa/p double knock-out mice brain [44,50].

There are multiple substrates of CaMKIIa in ePSDs
including scaffolds, enzymes, receptors, and adhesion
molecules. Phosphorylation by CaMKIIa could rewrite
the interactome in the ePSD, resulting in reorganization
of synaptic sub-compartments (Figure 2a and b right
panel). For example, the GK-binding repeats (GBRs) of
SAPAPs could be phosphorylated by CaMKIIa, resulting
in ~1000-fold increase of the interaction between
SAPAPs and PSD-95 (Figure 2a right panel) [38]. In test
tubes, addition of active CaMKIla into the immiscible
condensates formed by PSD-95/SynGAPa.1/AMPAR and
SAPAP1/Shank3/Homerl leads to fusion of the two
compartments into one single PSD condensate because
of the enhanced interaction between PSD-95 and
SAPAPI. In synapses of striatal neurons in the Sapapff/
~ mice brain, expressing SAPAP3 with forced binding
with PSD-95 led to a narrower separation between PSD-
95 and Homerl, an observation consistent with a
merging of the PSD pallium with the PSD core
(Figure 2b right panel) [38]. CaMKIla has also been
shown to phosphorylate SynGAP and AMPAR auxiliary
subunits TARPs, thereby regulating PSD condensate
dynamics and AMPAR synaptic clustering [51—53]. In
addition to CaMKIla, some immediate early gene
products can also regulate PSD condensate formation or
dispersion. For example, Arc can selectively disperse
TARP/PSD-95 condensate by competing with TARP for
binding to PSD-95 [53]. Homerla, another product of
immediate early gene and a monomeric isoform of the
Homerl family scaffold proteins, can disperse PSD
condensate by lowering the valency of the PSD
condensate network [5,39].
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Sub-compartmentalization of presynaptic
bouton contributes to SVs cycling

In addition to the ePSD, the presynaptic bouton is also
highly compartmentalized. Multiple sub-compartments
physically interact with each other, underling the orga-
nization and function of presynapses. The major physi-
ological function of the presynaptic bouton is to store
and release SVs in response to action potentials. Under
EM, a large pool of clustered SVs (known as the reserve
pool) away from PM could be easily identified (Figure 3a
and b) [54]. In addition, several SVs are docked to AZ
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right beneath PM (known as the readily releasable pool,
RRP) (Figure 3a and b) [1,54]. Extensive genetic
studies identified a series of scaffold proteins required
for maintaining the distinct pools of SVs. Knockout of
Synapsin results in drastic impairment of the clustered
SVs, suggesting a critical role of Synapsin in maintaining
the reserve pool SVs [55]. Purified Synapsinla un-
dergoes phase separation and co-acervation with SVs,
mimicking the clustering of the reserve pool SVs [6,56].
Recent single-molecule tracking analysis indicated the
confined movement of SVs within Synapsin condensates

Figure 3
(a) (b) Resting state Stimulated state
Presynaptic bouton A Ca?* influx
A " via VGCCs
Reserved —p \
pool // \\\\
Piccolo / Y4 Q\
Reserved , [N] 7 N L. 2/ AN
pool of SVs Plr[:glblo < , { ~ \
RRP of SVs RIMT§ | 1N o
Presynaptic Presynaptic
PM AL . 4 w4 PM Active zone i Endocytic zone
Postsynapt|c Densﬂy Mature SVs Recycled vesicles

(C) Resting state
Vesicles reserved in Synapsin compartments

Synapsin
AN

@ Piccolo anchored on AZ loosely associated
with vesicles

(d)

.-

® More vesicles recruited on AZ surface via
Ca?*-induced strong multivalent interaction
between Piccolo and vesicles

Stimulated state
Vesicles tethered on AZ compartments

Current Opinion in Neurobiology

Multiple synaptic sub-compartments in presynaptic boutons organize and maintain distinct functional pools of SVs.

(a) EM images showing the organization of SVs in a presynaptic bouton. The majority of SVs are clustered in the reserved pool away from the presynaptic
PM. Only a few SVs in RRP are close to PM. Scale bar: 200 nm. (b) In the resting state, several SVs are docked by the AZ compartments. Upon
stimulation, Ca2* influx via VGCCs could activate the giant protein Piccolo localized between the reserve pool and AZ for transporting SVs released from
the reserve pool after partial dispersion of synapsin compartments to the AZ surface to replenish RRP. Besides, the endocytic zone localized on the
presynaptic PM facilitates the recycling of vesicles. (c) The reconstituted presynaptic compartments recapitulate the distinct pools of SVs. In the resting
state, purified Synapsin and AZ proteins form segregated compartments, and vesicles are clustered in the reserve pool composed of Synapsin. Scale bar:
1 um. (d) By adding Ca®* to mimic synaptic stimulation, Piccolo could specifically interact with the lipids on vesicles, and extract vesicles from Synapsin
compartments. The Piccolo/Vesicles compartment could be recruited and merged with the AZ compartment. Vesicles associated with Piccolo are further
coated on the AZ surface. Scale bar: 1 pm.

a is adapted from SynapseWeb (https://synapseweb.clm.utexas.edu/16-chemical-synapses-36).
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[57]. Other proteins on SVs like Synaptophysin
could further facilitate the compartmentalization
of Synapsinla and SVs [58,59]. In neurons from
RIM ~/~/RIMBP ™ mice brain, the majority of RRP SVs
are depleted but the reserve pool SVs remain intact,
indicating that these two AZ proteins play a vital role in
selectively tethering SVs to AZs [60]. In an in vitro
reconstitution system, SVs coat on the surface of the
RIM/RIMBP condensates. The interaction between the
C2 domains of RIM and negatively charged lipids in
vesicles is required for the coating of SVs on the surface
of the RIM/RIMBP condensates [56]. Importantly, the
Synapsin-clustered SVs and the RIM/RIMBP-organized
SVs remain as two distinct phases when the two con-
densates were mixed in vitro (Figure 3c) [56,61],
explaining how chemically similar SVs can be organized
into distinct functional pools in presynaptic boutons.

Phase separation also contributes to the dynamic ex-
change of SVs between sub-bouton compartments.
Since only a few SVs are attached to the surface of AZ,
SVs need to be transported from the reserve pool to
replenish RRP after releasing events to sustain contin-
uous synaptic transmissions (Figure 3b). The reserve
pool and the AZ-coated pool of SVs are separated only by
~100—200 nm. Such short-distance SV movements do
not rely on conventional molecular motor-mediated
transport, as the space between the reserve pool and
AZ does not contain actin filaments or microtubules
[62,63]. The presynaptic scaffold proteins Piccolo and
Bassoon are indispensable for the replenishment of RRP
SVs [64,65]. Piccolo and Basson are giant proteins with
defined orientations in boutons: their N-termini facing
the PM-distal region of the bouton reaching the reserve
pool of SVs and their C-termini extend into AZ by
binding to AZ proteins like ELKS and RIMBP
(Figure 3b) [37,66]. Using a biochemical reconstitution
approach, we recently demonstrated that SVs can be
transported from the Synapsin-clustered reserve pool to
AZ-tethered RRP in a Ca“-depcndent manner via
phase separation (Figure 3d) [61]. In the absence of
Ca®*, Piccolo is recruited to the Synapsin/SV compart-
ment. Upon addition of Ca’", Piccolo undergoes phase
separation with SVs relying on Ca2+—dependent binding
with lipids on SVs, and extracts SVs from the Synapsin/
SV compartment. The Piccolo/SV condensate likely
serves as an intermediate compartment to deliver SVs
from the reserve pool to AZ. Via interacting with ELKS
and RIMBP, Piccolo enters and enriches into the AZ
compartment, while SVs retain on the surface of the AZ
condensate (Figure 3d).

Following the action potential triggered influx of Ca’*
through the voltage-gated calcium channels (VGCCs),
SVs in RRP undergo fusion with PM mediated by the
SNARE machinery. The assembly of SNARE complexes
requires Ca’**-induced activation of Synaptotagmin on
SVs. Therefore, the distance between VGCCs and the

SNARE fusion machinery is crucial for the efficiency of
SV fusion and synaptic transmission. Recent studies
based on super-resolution imaging have revealed high-
order assemblies of VGCCs, Synaptotagmin, and
Munc-13, etc. [67—70], possibly also via phase separa-
tion. Endocytosis-mediated recycling of SVs, especially
the ultrafast endocytosis, requires formation of dynamin
1A and Endophilin Al condensates (Figure 3b) [71,72].
It is worthy to investigate whether these sub-
compartments may interact with each other and how
their interactions orchestrate SV fusion with PM. For
example, both VGCCs and Munc-13 form nanoclusters
by themselves and simultaneously interact with RIM
[1], how do these sub-compartments co-assemble? Two
recent studies showed that ablation of liprin-a, another
key scaffold protein interacting with RIM in AZ, impairs
the accumulation of Munc-13 at the release sites
without affecting VGCCs, suggesting that RIM may
form distinct sub-compartments with its different
binding partners to organize Munc-13 and VGCCs,
respectively [67,73].

Conclusions and perspectives

Synapses are highly compartmentalized. Multivalent
protein—protein interaction governed phase separation
underlies formation of multiple sub-compartments with
distinct functions in both presynaptic boutons and
PSDs. Formation of multiple sub-compartments allows
various synaptic molecules/components to be located
and enriched in specific subsynaptic regions for synaptic
transmission and synaptic plasticity. Phase separation-
mediated molecular condensation and formation of
multiple demixed condensates beautifully illustrate why
distinct molecular assemblies can orderly exist in spe-
cific sub-compartments in both presynaptic boutons and
postsynaptic densities instead of undergoing diffusion-
governed homogenous mixing,.

Although  phase  separation-mediated  molecular
compartmentalization has provided exciting new in-
sights into synaptic organization and function, many
questions remain to be answered. For example, how do
different coexisting sub-compartments in pre- or post-
synaptic regions communicate with each other?
Whether and how synaptic adhesion molecules may
actively participate in synaptic alignment and sub-
compartmentalization [74]? A recent study showed
that removing the extracellular domain of LRRTM2
leads to the disassembly of GluAl clusters, suggesting
that LRRTM2 is required for the condensed AMPAR
compartment formation [75]. Synaptic adhesion mole-
cules, via both trans- and cis-synaptic interactions across
the synaptic cleft, are capable of forming high-order
assemblies [76—78]). Thus, it is possible that synaptic
adhesion molecules, either alone or together with
interacting synaptic scaffold proteins, phase separate to
form distinct condensates in aligning trans-synaptic
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structures such as transmitter releasing/receiving nano-
columns [79] and the global pre- and post-synaptic
juxtaposition of each synapse.
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