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Single-molecule localization microscopy (SMLM) in a typical wide-field setup has been 

widely used for investigating sub-cellular structures with super resolution. However, 

field-dependent aberrations restrict the field of view (FOV) to only few tens of 

micrometers. Here, we present a deep learning method for precise localization of spatially 

variant point emitters (FD-DeepLoc) over a large FOV covering the full chip of a modern 

sCMOS camera. Using a graphic processing unit (GPU) based vectorial PSF fitter, we can 

fast and accurately model the spatially variant point spread function (PSF) of a high 

numerical aperture (NA) objective in the entire FOV. Combined with deformable mirror 

based optimal PSF engineering, we demonstrate high-accuracy 3D SMLM over a volume 

of ~180 × 180 × 5 μm3, allowing us to image mitochondria and nuclear pore complex in 

the entire cells in a single imaging cycle without hardware scanning - a 100-fold increase 

in throughput compared to the state-of-the-art. 

 

Introduction 

While fluorescence microscopy with high contrast and super resolution has revolutionized  

structural cell biology studies1, high-throughput imaging with rich information content has 

enabled quantitative biology research2.  The trend has been pointed to developing high-
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throughput super-resolution imaging techniques for high content screening3–5. The typical 

strategy is for automated microscope to acquire small field of view (FOV) images one by one6 

and generate a mosaic image by post processing7. However, hardware automation is often not 

available in the typical microscopes, and some biological samples are not suitable to be 

volumetrically scanned. Moreover, it is not easy to stitch the super resolution images with 

accuracy comparable to its high spatial resolution7. As most biological samples contain rich 

structural information in three dimensions, it becomes particularly challenging to obtain the 

whole-cell-scale 3D single-molecule-resolution image at high throughput.  

As a wide-field super-resolution imaging technique, single molecule localization 

microscopy (SMLM) has the potential to increase the imaging throughput by just using a 

modern sCMOS camera with ultra-high number of pixels on a large chip without compromising 

the imaging speed or spatial resolution. Through homogeneous illumination, FOVs as large as 

221 µm  221 µm8 can be achieved using waveguides9, multimode fibers8, microlens arrays10 

or widefield illumination scanning11. However, 3D super-resolution imaging across large FOV 

to utilize the full camera chip remains difficult. We believe the main reason is that optical 

aberrations become more pronounced at the margins of the large FOV, leading to the degraded 

3D imaging quality. 

Conventional 3D SMLM analysis requires spatially invariant 3D point spread function 

(PSF) to achieve accurate fitting of single molecules. However, it is difficult to correct the 

aberrations if the emitters are far away from the central optical axis12, which is particularly true 

for the high NA objective lenses13,14. Efforts include the use of a regularly spaced nanohole 

array to build an approximated PSF model on the spatially variant of localization bias13, and 

the recent introduction of vectorial PSF theory by rendering the field-dependent PSFs with a 

group of Zernike coefficients14. The later has the potential to increase the accuracy, but it 

requires computational resources, e.g. costing ~2 min per localization for data analysis14. 

Therefore, such methods are difficult to use in practice, especially for high throughput imaging 

with large datasets. 

In recent years, deep learning has proved to be a powerful tool in SMLM15–18, especially 

for conditions with highly overlapping molecules. Examples include high density emitters16,17 , 

classifying colors18, optimizing engineered PSFs16,19, which are difficult to solve using 

conventional model fitting methods. As the image formation of single molecule signals by a 

microscope is well understood, a realistic PSF model incorporating aberrations can be simulated 

using established mathematical models with high accuracy15. This allows generation of 

virtually unlimited training data and helps the localization accuracy of the neural network 
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achieve Cramér-Rao lower bound (CRLB), the theoretical minimum uncertainty17,20. However, 

conventional convolution neural networks (CNNs) are spatially invariant and can only poorly 

learn spatial information21. They perform well for object recognition when the objects are 

decoupled from their spatial coordinates. Optical aberrations are often static and highly 

correlated to their positions. As a result, the pattern of point emitters is field dependent. For 

large FOV imaging, a spatially sensitive neural network is needed.    

To overcome the field-dependent aberrations, we present FD-DeepLoc (Fig. 1), which 

combines both fast spatially variant PSF modeling and deep learning based single molecule 

localization to achieve 3D super resolution over a large FOV and depth of field (DOF). Based 

on a GPU-accelerated vectorial PSF fitter, it can quickly model the spatially variant PSF by 

Zernike based aberration maps over a large FOV (Fig. 1a). The spatially variant PSF model is 

then used as a training-data generator for deep learning-based 3D single molecule localization 

(Fig. 1c). To enable CNNs to learn the spatially variant single molecule patterns, FD-DeepLoc 

incorporates CoordConv22 channels to the network architecture to encode the spatial context to 

the conventional CNNs which is otherwise spatially invariant. Moreover, we introduce a small 

aberration variation to the trained PSF models, which makes the network more robust when the 

theoretical and experimental PSF models are mismatched. With the accelerated PSF modeling 

and optimized CNNs, we demonstrate on various biological structures that FD-DeepLoc 

enables 3D whole cell super-resolution imaging across a large FOV with high fidelity, allowing 

quantitative analysis of super resolution images using larger sample set.  

Results 

GPU based fast and accurate spatially variant vectorial PSF modeling. To accurately model 

field dependent aberrations, we employed a GPU based vectorial PSF fitter to fit thousands of 

through-focus bead stacks evenly illuminated by a multimode fiber and randomly distributed 

in the entire FOV using maximum likelihood estimation (MLE, Extended Data Fig. 1). The 

pupil function of each bead was decomposed into Zernike polynomials whose coefficients were 

then interpolated to generate spatially variant aberration maps across the entire FOV (Fig. 2 

and Supplementary Fig. 1). Although the vectorial PSF could model the experimental PSF of 

a high NA objective with high accuracy, it is still not widely used for single molecule 

localization23,24. A key limitation for direct vectorial PSF fit is its great computational burden 

due to the complex functions involved in the Debye integral25 (Supplementary Note 1). Here, 

we overcome the computational challenge of vectorial PSF model fit in three ways. First, we 

implement the vectorial PSF fitter in CUDA C/C++ and execute it on the GPU, so that a fast 

modeling of the spatially variant PSF models over a large FOV is achieved. Running on an 
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NVIDIA GeForce RTXTM 3090 graphics card, our implementation amounts to ~50 fold speed 

advantage over a similar implementation running on an Intel® CoreTM i9-9900 processor (Fig. 

1b). Second, we integrated globLoc with flexible parameter sharing26 functionality to our 

vectorial PSF fitter which could link parameters (e.g. aberrations, xyz positions, photons, 

background) among different single molecule images. Therefore, the fitter could account for 

the photon bleaching and system drift during the acquisition of the bead stacks (Methods). The 

fitted PSF model agrees well with the experimental PSF model across the entire FOV (~180 

µm × 180 µm) at different z positions (Extended Data Fig. 2, Supplementary Fig. 2). Third, 

we developed a GPU based vectorial PSF simulator for the neural network so that online 

simulation and training of the neural network could be achieved (Supplementary Fig. 3). The 

whole GPU based vectorial PSF calibration, fitting and simulation pipeline enabled fast 

modeling and training of the neural network for analyzing the single molecule data in a large 

FOV.  

Features of the FD-DeepLoc network. CNNs use convolution kernels to detect features within 

an image and have been successfully applied in SMLM to localize molecules with precision as 

high as CRLB17,20. In conventional CNNs, such as our previously published DECODE 

network17, all feature patterns in the images share the same convolution kernels. As a result, the 

detected features are spatially invariant to their local positions. To enable the CNN to precisely 

localize the field dependent single molecule patterns, we introduced two additional coordinate 

channels (x and y) to the DECODE input. The essences of the coordinate channels are the pixel-

wise x/y positions (Fig. 1c). Therefore, the position is explicitly modelled and can have an 

influence on the training and inference performance (CoordConv22, Fig. 1c and d and 

Extended Data Fig. 3). We then combined CoordConv with a conventional spatially invariant 

CNNs (DECODE17) and enabled FD-DeepLoc to precisely determine both what feature it reads 

and where it is positioned in the FOV. To adapt to the large FOV, which is memory consuming 

during training, we sample a sub-area (usually 128×128 pixels) of the entire single molecule 

image to the network. The global position of each sub-area was encoded in the coordinate 

channels. Therefore, the network could retrieve the field dependent feature pattern of each 

single molecule within the sub-area using the local coordinate information and corresponding 

simulated PSFs based on the calibrated aberration map of entire FOV.  

Normally, deep learning methods perform well when the training data accurately resembles 

the experimental data. However, experimental PSFs are often slightly different between 

different samples. Such a model mismatch between training and experimental data results in 

localization errors. To illustrate this problem, we simulated three datasets with different 
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aberrations of various amplitudes: 70 nm astigmatism; 70 nm astigmatism plus 20 nm spherical 

aberration; 70 nm astigmatism plus 20 nm spherical aberration plus 20 nm coma (Extended 

Data Fig. 4). The network was trained using only 70 nm astigmatism. As shown in Extended 

Data Fig. 4a, DECODE performs well when the PSF models between training and test datasets 

are matched. However, if a little spherical aberration is added to the test dataset, the network 

predicts large artifacts, especially at imaging planes away from focus (Extended Data Fig. 4d 

and e). The artifacts became more severe when we further added the coma aberration 

(Extended Data Fig. 4g and h). We suspect that this is due to the PSF model mismatch. We 

then gave more freedom to the training data generator by adding small random disturbances 

(normal distribution with zero mean and 0.06 rad standard deviation) to all Zernike coefficients 

(Methods). The additional aberrations account for the measurement error of the PSF calibration 

and sample induced aberrations. It makes the network more robust to different situations while 

maintaining relatively high accuracy. As shown in Extended Data Fig. 4c, f and i, the modified 

loss function (Methods) and robust training strategy greatly reduced the artifacts. Additionally, 

the root mean square error (RMSE) only deteriorates slightly compared to that when the training 

model is totally matched with the test data. We also compared the reconstruction of nuclear 

pore complex (NPC) protein Nup96 by the network trained with/without robust training. In 

Supplementary Fig. 4, it is clearly shown that robust training reduces the artifacts at defocus 

area significantly, where model mismatch happens most frequently.   

Moreover, we found that training using a non-uniform background can effectively improve 

the network’s detection accuracy on experimental images. As shown in Supplementary Fig. 5, 

the network trained with uniform background is prone to predict many false positives in the 

experimental data. This is because biological images often contain structured background27 

which are recognized as dim, large-defocus emitters by the network17. Although some of these 

artifacts can be filtered in the postprocessing step, training with data under non-uniform 

background greatly reduces these artifacts at the first place and avoids the reconstruction being 

contaminated by these false positives. 

Performance of FD-DeepLoc on simulated large-FOV data with field-dependent 

aberrations. We first quantify the accuracy of FD-DeepLoc using single molecules with field-

dependent aberrations. To this end, we trained FD-DeepLoc and DECODE17 using the same 

synthetic data with simulated field-dependent aberrations with an FOV of  204.8 × 204.8 μm2 

based on our customized microscope system (Supplementary Fig. 6). We then chose single 

molecules locate at five different positions in the FOV: left top, right top, left bottom, right 

bottom, and middle positions for localization accuracy evaluation. The PSFs are visually 
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different at these positions (Extended Data Fig. 5). The localization results of FD-DeepLoc 

and DECODE on these datasets are shown in Extended Data Fig. 5. The theoretical 

localization precision limit, CRLB, are also shown as a reference. As indicated by Extended 

Data Fig. 5, FD-DeepLoc was able to simultaneously reach CRLB at different locations, while 

DECODE, trained with multiple PSF models simultaneously corresponding to the entire FOV, 

but without spatial context, was difficult to achieve CRLB in all locations. As the PSF patterns 

are not fixed with respect to their global positions during the training of DECODE, different 

PSF models probably confuse the network to make a proper prediction. 

To quantify the performance of FD-Deeploc on SMLM images over the entire FOV with 

field dependent aberrations, we simulated six evaluation datasets which consisted of randomly 

distributed hollow rods pattern in a 204.8×204.8×1.4 μm3 volume (Fig. 3a). The structure 

coordinates were generated using TestSTORM28. For each single molecule, we employed the 

same photophysics model as the SMLM challenge29. For each dataset, three levels of signal to 

background (low, medium, high) and two levels of aberrations (normal, strong) were used to 

generate the SMLM images (Fig. 3b, Supplementary Fig. 6, Supplementary Fig. 7 and 

Supplementary Note 2). The density is set as 1.5 emitters/μm2. As before, we compared FD-

DeepLoc with DECODE, trained with all PSF models simultaneously, and with the cubic spline 

fitter30 from SMAP31 using an average PSF model. 

To quantitatively compare the algorithms, we employed two metrics: Jaccard Index (JI) 

and volumetric Root Mean Squared Error (RMSEvol), which represent detection efficiency and 

3D localization accuracy, respectively (Supplementary Note 3). Similar to previous findings17, 

deep learning-based algorithms could achieve higher JI score compared to the model fitting-

based algorithms (Fig. 3b). Returned localizations close to the ground truth positions (< 250 

nm for lateral and < 500 nm for axial) were used for calculation of RMSEvol. Fig. 3b shows the 

RMSEvol results of these algorithms. Both deep learning methods behaved much better than the 

model fitting-based method as the fitter only utilizes an averaged PSF model. By additionally 

encoding the global position information into the data channel using CoordConv22, FD-

DeepLoc improved the RMSEvol by almost a factor of 2 compared to that of DECODE. Fig. 3c 

and f are the reconstructed 3D images of central and peripheral regions using different 

algorithms, respectively. As the aberrations in the central area are usually small, the hollow 

structure of the simulated rod can be resolved in all reconstructions (Fig.3d and e). By contrast, 

only FD-DeepLoc can clearly resolve the hollow structure of the simulated rod in the marginal 

area (Fig. 3g and h) where the field-dependent aberrations are quite large.  
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FD-DeepLoc enables large FOV 3D super-resolution imaging with high fidelity. We then 

applied FD-DeepLoc to experimental data from a biological sample. We imaged the 

nucleoporin Nup96 in U2OS cells (Fig. 4, Extended Data Fig. 6 and Supplementary Movie 

1), which is widely used as a quantitative reference structure32, and mitochondria TOM20 in 

COS7 cells (Extended Data Fig. 7 and Supplementary Movie 2). Thanks to the multi-mode 

fiber illumination, we were able to homogeneously illuminate an FOV (~180 µm × 180 µm) 

that covered the full chip of our sCMOS camera, thus fully utilizing the imaging capability of 

the modern sCMOS technologies with ultra-high pixel numbers. We used conventional 

astigmatism-based 3D SMLM by inserting a cylindrical lens to the imaging path, which 

introduced an astigmatism of ~70 nm rms wavefront aberration to the system (Fig. 2).  

We then compared the reconstructed images analyzed by FD-DeepLoc, DECODE and 

Cspline. For model fitting based Cspline method, an averaged PSF model in the central area 

(center 512 ×512 pixels) was used. In the central region, where the aberrations are relatively 

small, all algorithms can reconstruct the double ring structure of the nucleoporin Nup96 as 

indicated by the axial intensity profiles (Fig. 4g-i). In contrast, the returned localizations by 

Cspline tend to converge to the same z-positions in the peripheral areas (Fig. 4j, Extended 

Data Fig. 6 and 7) where the model mismatch happens. For the deep learning-based methods, 

all PSF features across the entire FOV were included in the training dataset. However, since 

the spatially variant PSF patterns are trained without spatial context in DECODE, DECODE 

returned ghost images (Fig. 4j, Extended Data Fig. 6), which agrees with the previous 

simulated data. In contrast, FD-DeepLoc could nicely reconstruct the double ring structure of 

Nup96 at different locations with different aberrations (Fig. 4 h, i, k, l), showing superior 

Fourier ring correlation (FRC) resolution (Supplementary Fig. 8). 

FD-DeepLoc combined with DM based optimal PSF engineering enables whole cell 3D 

super-resolution imaging over large FOV. PSF engineering encodes the z information to the 

shape of the PSF and could enable 3D super-resolution imaging without the need to scan the 

sample33,34. In order to perform volumetric super-resolution imaging of the whole cell at high 

throughput, we optimized deformable mirror (DM) based PSF35 that has best 3D CRLB in a 6 

µm axial detection range which could cover the entire cell (Methods). As the DM has limited 

number of actuators, Zernike polynomial or pixelwise based pupil function optimization 

methods could lead to approximation error using DM. Here, we directly employed the influence 

functions of the DM as the basis function for the pupil function optimized and called the PSF 

optimized in this way as DM based optimal PSF (DMO PSF)35. We then applied the 6 µm DMO 
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PSF to image the mitochondria and NPC in the whole cell (Fig. 5, Extended Data Fig. 8 and 

Supplementary Fig. 9).  

With the help of FD-DeepLoc, we were able to reconstruct high quality 3D super 

resolution image over the entire FOV (Fig. 5a and Supplementary Movie 3). The axial 

imaging range spanned over ~ 5 µm (Fig. 5b and Supplementary Movie 4).  We then chose 

three cells locates at different corners of the FOV. The hollow structure of the mitochondria in 

these cells could be nicely resolved in the side-view cross section images. Compared with 

DECODE, FD-DeepLoc reconstructed sharper mitochondria images as shown in Fig. 5i - k. 

The improved resolution is also confirmed by the FRC analysis of the reconstructed images by 

these two methods. The overall FRC resolution of these cells is about ~50 - 60 nm for FD-

DeepLoc while it is ~80 - 100 nm for DECODE (Supplementary Fig. 10). We also performed 

3D whole cell imaging of NPCs. As shown in Extended Data Fig. 8, Supplementary Movie 

5 and 6, FD-DeepLoc could resolve the structure of the whole nuclear envelope. In the zoomed 

image as shown in Extended Data Fig. 8 c and d, we were able to resolve the nuclear pores as 

rings both in the top and bottom of the nuclear envelope. The consistency of the radii of NPCs 

is also verified at the top and bottom of the cells in both central and marginal regions (Extended 

Data Fig. 8e and f, Supplementary Note 4). 

As FD-DeepLoc enables super-resolution imaging with both large FOV and DOF, 

quantitative analysis of groups of super-resolved whole cells becomes feasible. To this end, we 

used an ImageJ plugin, Mitochondria Analyzer36, to analyze the reconstructed super-resolution 

images of whole cell mitochondria. Thanks to the high throughput imaging capabilities, 121 

whole cell 3D super-resolution mitochondria images can be acquired in only 16 ROIs within 

few hours (Extended Data Fig. 9). We then extract their morphology parameters and network 

connectivity (e.g., volume, sphericity, branch length, etc.) using Mitochondria Analyzer plugin 

(Supplementary Note 4). Principal component analysis was then performed on these features 

(eight-dimensional feature vectors, Extended Data Fig. 9). The results were finally classified 

using k-means++ algorithm37. 3 types of cells with different mitochondria features were 

observed: Type1 cells contain more small round mitochondria and fewer branches; Type2 cells 

contain outspreading mitochondria and more complex networks; Type3 cells contain a mixture 

of spherical and tubular mitochondria. These results demonstrate that FD-DeepLoc is 

compatible with many downstream biological image analysis tools. The high throughput data 

with super-resolution would hopefully give new insights to many biological applications.  

FD-DeepLoc combined with DMO PSF with flexible DOF enables high resolution imaging 

of neuronal processes across large FOV. Neuronal cells grow neurites over hundreds of 
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microns in culture. Conventional astigmatic 3D SMLM imaging of neurites is normally limited 

to a DOF < 1.2 µm and FOV < 50 × 50 µm2, impeding the visualization of neurites with large 

diameter and their 3D organization in large scale. Here, we imaged neuronal cells which were 

induced from mouse embryonic stem cells (Methods). The induced neuronal cells were grown 

for about 21 days and labeled by β2-spectrin which forms a periodic submembrane scaffold 

along axons38. We first applied the widely used astigmatic PSF for the 3D imaging. The periodic 

organization of spectrin along the neurites is clearly resolved (Fig. 6 a-c). However, due to the 

limited axial range, the neurites showed discontinuous structure where their axial spread is 

larger than the DOF of astigmatic PSF (Fig. 6d and e). We therefore engineered a 3 µm DMO 

PSF using a deformable mirror as described before35. Compared to the astigmatic PSF, the 3µm 

DMO PSF improved the axial range by more than 2 times, while the averaged 3D CRLB is 

almost the same (Supplementary Fig. 11). We then applied the 3µm DMO PSF to image the 

thick neurite network across large FOV. The 3D distribution of β2-spectrin can also be nicely 

reconstructed even in the neurites with large diameter using the 3µm DMO PSF (Fig. 6 f - j). 

The periodic structure can be observed in both the top and bottom surfaces of the neurites (Fig. 

6 j). The demonstrated high resolution over large FOV and DOF would benefit many 

applications with large sample size.  

Discussion 

To summarize, we presented FD-DeepLoc, a special deep learning-based method for SMLM 

with spatial awareness that enables high throughput whole cell 3D super-resolution imaging 

over a large FOV and DOF. We attribute the broad applicability of high throughput super-

resolution imaging to three advances made in this work: (1) a GPU based vectorial PSF fitter 

for fast and accurately modeling spatially variant PSFs over large FOV under high NA 

objectives; (2) full frame large FOV imaging using the modern sCMOS technology and large 

DOF imaging using an PSF optimized for DM with large axial range; (3) a robust spatially 

variant CNN, FD-DeepLoc, that is able to learn spatially variant features to correct the field 

dependent aberrations. As a result, both in the popular astigmatism and DMO Tetrapod PSF 

based 3D super-resolution imaging, FD-DeepLoc achieved high accuracy reconstruction of 

biological structures with high fidelity across the entire camera frame.  

An accurate and comprehensive PSF model is the key to extract multi-dimensional 

information from single molecules, and vectorial PSF model is superior for a high NA objective 

system as both polarization effects and refractive index variations are considered. Our GPU 

based vectorial PSF fitter takes full advantage of the accurate vectorial PSF model incorporating 

high-dimensional optical parameters, while maintaining a fast computational speed (<1 s for 
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bead stacks size of 27×27×41).  Furthermore, our vectorial PSF fitter is very flexible in terms 

of parameter sharing between different single molecule images, which could be used to extract 

the rich information (i.e., aberration, dipole orientation, wavelength, etc.) within single 

molecules by global optimization of different single molecule images.  

Aberrations in the optical system are often static and field dependent. Correcting the 

aberrations with a shift-varying PSF models is normally slow and computationally intensive39.  

FD-DeepLoc with CoordConv can successfully encode the position information into the neural 

networks, without significantly increasing the size of the network. Therefore, the CoordConv 

strategy is very suitable to many position sensitive imaging applications, such as field 

dependent PSF deconvolution39 and multi-channel PSF modeling with shift-invariant 

transformation19, with only minor modification to the conventional CNNs. 

Correction of the field dependent aberrations, as well as with the optimized large DOF 

PSF engineering, volumetric 3D super-resolution imaging of samples with large size, e.g., 

organoid, tissue sections, mammalian embryos etc., becomes accessible to many labs without 

the need of complicated hardware automation. For thick samples with more prominent sample 

induced aberrations, a more accurate in-situ PSF model (e.g., INSPR40) could also be easily 

incorporated into our vectorial PSF model for training data simulation. Future development 

could include 3D coordConv for correction of sample induced depth dependent aberrations. 

Finally, as an open-source code with detailed examples and tutorials, FD-DeepLoc will 

transform 3D SMLM from a low throughput technique into a high throughput imaging 

technology even under a microscope without much hardware modification.  
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Fig. 1 | Schematic of FD-DeepLoc. a, Field-dependent aberration calibration. Thousands of 

through-focus bead stacks sampling the entire FOV are fitted to a vectorial PSF model with a 

GPU based fitter to retrieve the field-dependent Zernike aberrations. The left panel shows an 

aberration map for astigmatism. The two right panels are the fitted Zernike coefficients for two 

bead stacks at the center and corner positions, respectively.  b, Fitting speed of vectorial PSF 

fitter implemented in different programming languages running with CPU and GPU 

individually. The bead stack used for evaluation has a ROI size of 27×27×41 pixels with a 

PC equipped with an Intel Core i9-9900 processor of 128GB RAM clocked at 3.50GHz and an 

NVIDIA GeForce GTX 3090 graphics card with 24.0 GB memory. c, FD-DeepLoc training 

process. The training dataset is generated by the spatially variant vectorial PSF model using the 

calibrated aberration maps with a small variant to compensate for the models mismatch between 
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theoretical and experimental PSF models. For each single molecule, the coordinate is randomly 

placed in the FOV. Three consecutive images of a sub areas (usually 128×128 pixels) with 

corresponding coordinate channels are used in each training unit. d, FD-DeepLoc inference 

process. Full frame images are divided into multiple sub-areas which are sequentially fed into 

the network with the corresponding global position. The output of the network are ten prediction 

channels with the same size as the input image, each corresponds to an estimated parameter 

(probability �̂� , positions 𝛥�̂�, 𝛥�̂�, �̂� , intensity 𝐼 , and uncertainties 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 , 𝜎𝐼  and single 

molecule image estimation 𝑀𝑜𝑙̂ ). A molecule list with uncertainty estimation of parameters is 

generated from these channels. We finally used SMAP31 to render the super-resolution images 

and ViSP41 to generate the reconstructed 3D super-resolution movies from the molecule list.    
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Fig. 2 | Field-dependent aberration maps for an astigmatic PSF induced by a cylindrical 

lens. a, The distribution of the beads used for aberration map calibration (summed from 50 sets 

of beads stacks). Blue circles denote all beads collected and red crosses denote the beads after 

filtering.  b, The relationship between aberration magnitude and the distance to center of FOV. 

Color denotes the distance to the FOV center. c, The interpolated 21 Zernike aberration maps 

of our microscope after inserting a cylindrical lens to the system. The contour interval is 16 nm.  
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Fig. 3 | Performance of FD-DeepLoc on simulated datasets with field-dependent 

aberrations. a, Simulated hollow rods are randomly distributed in a 204.8×204.8×1.4 μm3 

volume. b, Performance evaluation on simulated datasets with different magnitudes of 

aberrations and SNRs using Jaccard index and RMSE. Aberration maps with two different 

magnitudes were used (Normal and Strong, Methods). Low, medium, and high SNRs are 

corresponding to average 1000/5000/10000 photons per emitter and 10/50/100 background 

photons per pixel, respectively. The fitting model for Cspline is an averaged PSF model. The 

training data for DECODE and FD-DeepLoc is the same. c1-4 are zoomed views of the region 

indicated by the box c in a, reconstructed using ground truth and predictions of three different 
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algorithms, respectively. d1-4, side-view cross-sections along the dashed lines in c1-4. e1-4, 

axial intensity profiles along the dashed lines in d1-4. f,g,h have the same meaning as c,d,e 

respectively, but for the region indicated by the box f in a. The visual comparison c and f are 

based on the dataset with Normal aberration and medium SNR. Scale bars, 50 µm (a), 1 µm (c, 

f), 200 nm (d, g).  
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Fig. 4 | Performance of FD-DeepLoc on experimental astigmatic 3D data of NPCs in a 

large FOV. a, Overview of the panoramic 3D super-resolution image of Nup96-SNAP-AF647 

reconstructed by FD-DeepLoc. b, Top views of the NPCs reconstructed with FD-DeepLoc, 

Cspline and DECODE. b1, Zoomed view of the region indicated by the dashed box b in a. b2, 

b3 and b4 are the zoomed images of the rectangle region indicated in b1 reconstructed by FD-

DeepLoc, Cspline and DECODE, respectively. c and d, Zoomed views of the regions indicated 

by boxes c and d in b. e and f, Intensity profiles of the dashed lines denoted in c and d, 

respectively. g, Zoomed view of the region indicated by the dashed box g in a. g2-4, Side-view 

cross-sections of the region as indicated by the dashed lines in g1 reconstructed by: g2, FD-

DeepLoc; g3, Cspline; g4, DECODE. h and i, Intensity profiles of the dashed lines denoted in 

g. j - l are the same as g - i, but for regions denoted by the dashed box j in a. 

Representative results are shown from 3 experiments. Scale bars, 50μm (a), 5μm (b1), 1μm (b2, 

g1, g2, j1, j2) and 50nm (c1, d1). 
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Fig. 5 | FD-DeepLoc enables 3D super-resolution imaging of mitochondria within a large 

FOV (180 × 180 µm2) and DOF (𝟓 𝛍𝐦). a, Overview of the panoramic 3D super-resolution 

image of mitochondria, where z position is indicated by color. b, Different axial sections of a. 

b1-3 are top views of axial range of (0 μm - 1.7 μm), (1.7 μm - 3.4 μm) and (3.4 μm – 5 μm), 

respectively. c,d,e, Magnified views of areas denoted by the dashed white boxes in a. f,  g and 

h are side-view cross-sections of the region denoted by the white dashed lines in c, d and e, 

respectively. i, j and k are side-view cross-sections of areas denoted by the orange dashed lines 

in c, d and e, respectively. Raw beads and single molecule data for DMO Tetropad PSF can be 
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found in Supplementary Fig. 9. Representative results are shown from 7 experiments. Scale 

bars, 50 μm (a, b1), 10 μm (c), 1 μm (f) and 500 nm (i1).  
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Fig. 6 | FD-DeepLoc with flexible DMO PSF engineering enables high quality 3D super-

resolution imaging of thick neurites over a large FOV. a, Overview of the panoramic 3D 

super-resolution image of neurites using astigmatic PSF. b, c, d, Magnified views of areas 

denoted by the dashed white boxes in a, respectively. Insets in b and c are the corresponding 

side-view cross-section of the areas denoted by the dashed lines in b and c, respectively. e, 

Wide-field diffraction limited image of the area d. f, Overview of the panoramic 3D super-

resolution image of neurites using 3 µm DMO PSF. g - j, Magnified views of areas denoted by 

the dashed white boxes in f, respectively. Insets in g - j are the corresponding side-view cross-

section of the areas denoted by the dashed lines in g - j, respectively. e, Wide-field diffraction 

limited image of the area d. j2 - 3 are top views of axial range of (0 μm – 1 μm), (1 μm - 2 μm) 

and (2μm – 3 μm), of j1 respectively. Representative results are shown from 7 experiments. 

Scale bars, 50 μm (a, f), 10 μm (d) and 1 μm (b, c, g, h, i, j and insets). 
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Methods 

GPU based vectorial PSF fitter 

The field dependent aberrations are retrieved from through focus imaging stacks of fluorescent 

beads using vectorial PSF model (Supplementary Note 1 and Supplementary Fig. 12). MLE 

fitting routine was employed to analyze the bead stacks with Zernike coefficients as the fitting 

parameters. We then employed globLoc26 for the parameter estimation. Each image in the bead 

stack can be regarded as an individual channel, whose fitting parameters can be shared or fit 

independently.  Since the aberration term 𝜓𝑎𝑏𝑒𝑟 in each bead stack is the same at different z 

positions, the Zernike coefficients are treated as global parameters across the z stack.  The other 

parameters can either be treated as global or local parameters depending on different imaging 

conditions. Since the system drift is very small during the acquisition of beads stack in our 

microscope, we linked x, y, and z parameters while the photons and background parameters are 

unlinked to account for the photon bleaching effect during imaging acquisition.  

Since vectorial PSF fitter is computational challenging, we implemented the fitting pipeline 

using CUDA C/C++ in NVIDIA CUDA® enabled graphic cards to enable fast modeling of the 

spatially variant PSFs in the large FOV. The framework of the MLE fitting method follows the 

previous work26 which employed a modified Levenberg-Marquardt iterative schemes for non-

linear optimization. To accurately retrieve the aberrations from point emitter, single molecule 

images at different z positions are normally needed. To make full use of GPU multithreaded 

parallel operation, pupil function of single molecules at different z positions are calculated 

parallelly in different blocks before fast Fourier transform (FFT). As calculation of the 

derivatives for each parameter (21 Zernike coefficients plus x, y and z) in each iteration requires 

24 FFTs (including forwards and inverse FFT) and FFT is very time consuming, we parallelly 

executed multiple FFTs with GPU. We set the maximum parallelism for 64 molecules to avoid 

the memory overflow. 512 threads were used in each block. Our GPU-based vectorial PSF fitter 

is about 50 times faster than CPU based C/C++ code. The GPU-based CUDA code is compiled 

in Microsoft Visual Studio 2019 for both Matlab and Python individually. A PC equipped with 

an Intel Core i9-9900 processor of 128GB RAM clocked at 3.50GHz and an NVIDIA GeForce 

GTX 3090 graphics card with 24.0 GB memory was used for speed benchmarking. 

Calibration of aberration maps over a large field of view 

The field-dependent aberrations are retrieved from thousands of through-focus bead stacks 

randomly distributed in the whole FOV on the cover glass (Fig. 2). For astigmatism PSF 

calibration, 41 single emitter images were recorded with a z step of 50 nm over an axial range 

of 1 μm above and below the focus. For Tetrapod PSF calibration, 61 single emitter images 

were recorded with a z step of 100 nm over an axial range of 3 μm above and below the focus. 
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All bead stacks were acquired with an exposure time of 100 ms and illumination intensities of 

~400 mW (over 180 ×180 μm2 FOV) on the sample. We removed bead stacks whose center 

position are less than 25 and 50 pixels from their nearest neighbor beads for astigmatism and 

Tetrapod beads calibration, respectively. Each bead stack was segmented in a maximum-

intensity projected image by maximum finding and thresholding. We then used the GPU based 

vectorial PSF fitter to fit each bead stack by MLE to retrieve the Zernike based aberration 

coefficients. In this work, the coefficients of all the 21 tertiary Zernike polynomials were 

retrieved for each bead stack. The retrieved coefficients represent the local aberration on the 

position where the bead stack locates. To exclude some outlier bead stacks (e.g., aggregated 

beads, background contaminated beads, etc.), we filtered the beads whose Zernike coefficients 

with a difference to the local mean value (256×256 pixels around the bead for astigmatism PSF 

and 1024×1024 pixels for Tetrapod PSF) are more than 2.5 times of the standard deviation of 

the local coefficient values. Bead stacks whose relative root square error (RRSE)42 between the 

raw data and fitted model was more than 15% for astigmatism PSF and 20% for Tetrapod PSF 

were also discarded (Supplementary Fig. 2). The RRSE is defined by 

 𝑅𝑅𝑆𝐸 = ‖𝑃𝑆𝐹𝑑𝑎𝑡𝑎 − 𝑃𝑆𝐹𝑚𝑜𝑑𝑒𝑙‖2 ‖𝑃𝑆𝐹𝑑𝑎𝑡𝑎‖2⁄                               (1) 

where 𝑃𝑆𝐹𝑑𝑎𝑡𝑎 is the bead stack raw data and 𝑃𝑆𝐹𝑚𝑜𝑑𝑒𝑙 is the fitted PSF model. After filtering, 

we interpolated each aberration coefficient across the whole FOV using natural interpolation. 

Gaussian smoothing with a sigma of 100 and 200 pixels were applied to the aberration maps 

for astigmatism and Tetrapod beads, respectively.  

PSF engineering 

A deformable mirror based optimal PSF (DMO PSF) was employed in this work. Similar to 

our previous work35, we optimized the pupil function of the engineered PSF by minimizing its 

3D CRLB. Instead of using Zernike polynomials as the solution space, we used the influence 

function of each DM actuator as the basis function of the pupil function optimized. It offers 

more accurate and flexible wavefront design and avoids the approximation error which often 

happens during the Zernike based and pixelwise wavefront control. The objective function for 

pupil function optimization is given by: 

 𝜓𝐷𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜓𝐷𝑀∈ℝ

{𝐶𝑅𝐿𝐵3D, avg + 𝛼𝑅avg(𝑃𝑆𝐹)}                                  (2) 

where 𝐶𝑅𝐿𝐵3D, avg = 1/𝑁𝑧 ∑ (𝐶𝑅𝐿𝐵�̂�,𝑧 + 𝐶𝑅𝐿𝐵�̑�,𝑧 + 𝐶𝑅𝐿𝐵�̑�,𝑧)𝑧∈Ζ  is the averaged 3D CRLB 

over 𝑁𝑧 discrete z positions in a predefined axial range Ζ. 𝑅avg(𝑃𝑆𝐹) term is used to confine 

the spatial extent of the PSF to reduce overlap: 

 𝑅avg(𝑃𝑆𝐹) = 1/𝑁𝑧 ∑ (∑ (𝑝𝑥
2 + 𝑝𝑦

2)𝑝𝑥,𝑝𝑦
× 𝑃𝑆𝐹𝑧(𝑝𝑥, 𝑝𝑦))𝑧∈Ζ                (3) 
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where (𝑝𝑥, 𝑝𝑦) represents pixel coordinates with the center of PSF model as zero. 𝛼 is a hyper-

parameter. In this work, we set 𝛼 as 0 and 30 for the 1.2 μm DMO saddle point PSF and 6 μm 

DMO Tetrapod PSF optimization, respectively. The z steps were set as 100 nm and 200 nm for 

DMO saddle point and Tetrapod PSF respectively. 

FD-DeepLoc network 

To enable the network to analyze SMLM images with field-dependent features, we employed 

the CoordConv strategy22. Two extra coordinate channels were added to the input, one for the 

𝑥 position and the other one for the 𝑦 position in normalized coordinates. In CoordConv layer, 

there are extra convolution kernels with size of 𝑛 × 2 × 1 × 1  working on the coordinate 

channels (Extended Data Fig. 3), where 𝑛 is the number of output channels of the original 

convolutional layer, 2 refers to the input xy channels, 1 × 1 is the size of the convolutional 

kernel. The result of the coordinate convolution is then added on the result of image convolution 

to form the output of CoordConv layer. With only 2𝑛 additional weights for each CoordConv 

layer, the network is sensitive to the spatially variant PSFs. 

Similar to DECODE, the main network architecture of FD-DeepLoc consists of two 

stacked U-nets43: frame analysis module and temporal context module (Extended Data Fig. 3). 

We incorporated the first convolutional layer of each module with CoordConv22. Each module 

contains 16 layers, including twelve 3×3 convolutional layers, two 2×2 convolutional layers 

and two up-sampling layers. At each 2×2 convolutional layer and up-sampling layer, the 

resolution will be halved and doubled, respectively. The frame analysis module receives 3 

consecutive frames and outputs 48-channel features for each frame. These features are then 

analyzed by the temporal context module, whose outputs are used to form the final prediction.  

Exponential linear unit (ELU) activation is used after each hidden layer.  

For each 3 consecutive frames’ input unit, FD-DeepLoc outputs ten-channel maps 

(Supplementary Note 5): the first two channels are pixel-wise probability �̂�𝑘 of an emitter 

exists in the pixel k and its corresponding photons 𝐼𝑘. To achieve sub-pixel precision, another 

three channels output two lateral continuous-valued offset 𝛥�̂�𝑘, 𝛥�̂�𝑘 relative to the center of the 

pixel 𝑘 and axial distance �̂�𝑘 relative to the focal plane. Four additional channels represent the 

uncertainty 𝜎𝑥𝑘, 𝜎𝑦𝑘, 𝜎𝑧𝑘 , 𝜎𝐼𝑘 for x, y, z and photon parameters estimation, respectively. The last 

channel 𝑀𝑜𝑙̂  is optional, which predicts the theoretical single molecule image of the inputs. 

This can also be used to predict background by subtracting it from the raw image. The Tanh 

activation function were used for localization offset 𝛥�̂�𝑘, 𝛥�̂�𝑘, �̂�𝑘 channels, while the Sigmoid 

function were used for all other channels. 

Loss function 
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The loss function of FD-DeepLoc is a modified version of that of DECODE and consists of 

four parts: cross-entropy term, count loss term, localization loss term and PSF loss term: 

 ℒ = ℒ𝑐𝑒 + ℒ𝑐𝑜𝑢𝑛𝑡 + ℒ𝑙𝑜𝑐 + ℒ𝑀𝑜𝑙                                          (4) 

Here, ℒ𝑐𝑜𝑢𝑛𝑡 and ℒ𝑙𝑜𝑐 are the same as the ones in the DECODE loss function. ℒ𝑐𝑒 is the cross-

entropy (CE) between the predicted probability map and its corresponding ground truth map: 

ℒ𝑐𝑒 = ∑ −[𝑝𝑘 + (1 − 𝑝𝑘) × log(1 − �̂�𝑘)

𝑘

]                              (5) 

where �̂�𝑘  is the predicted probability that an emitter exists in the pixel 𝑘 , 𝑝𝑘 is the binary 

ground truth probability. As the network outputs continuous-valued localizations formed by 

pixel-wise probability ( �̂�𝑘 ) and subpixel offsets ( 𝛥�̂�𝑘, 𝛥�̂�𝑘, �̂�𝑘 ). The overall localization 

problem can be treated as a combination of classification (whether an emitter exists in a pixel) 

and position regression tasks. Here, the ℒ𝑙𝑜𝑐 term is the MLE of the position regression task 

(Gaussian-mixture model) and the ℒ𝑐𝑒 term is the MLE of the classification task (probabilistic 

sigmoid model). The CE term could be regarded as a complement for ℒ𝑙𝑜𝑐 as it provides a 

clearer objective for the probability channel. In our simulated dataset, it could help the 

probability output channel of the network converge better and leads to better RMSE (Extended 

Data Fig. 4b, Supplementary Fig. 13).  Although the two categories are highly imbalanced 

(most pixels are empty even for dense localization), the ℒ𝑐𝑜𝑢𝑛𝑡 term could effectively avoid 

predicting an empty map.   

ℒ𝑀𝑜𝑙  measures the error between the predicted single molecule image 𝑀𝑜𝑙̂
𝑘  and the 

ground truth single molecule image 𝑀𝑜𝑙𝑘 without adding background and camera noise: 

 ℒ𝑀𝑜𝑙 = ∑ (𝑀𝑜𝑙̂
𝑘 − 𝑀𝑜𝑙𝑘)2

𝑘                                             (6) 

Here, ℒ𝑀𝑜𝑙 is used to enforce the network to learn the spatially variant features of PSFs. The 

predicted theoretical single molecule images can also be utilized to generate the background 

image by subtracting it from the raw data.  

Training data simulation  

FD-DeepLoc follows the training procedure as shown in Fig. 1c. The training data are generated 

online using the spatially variant PSF model calibrated before (Supplementary Note 5). To 

generate temporal image sequences for training, we simulated the data in the units of three 

consecutive images. The network’s prediction is for the molecules in the middle frame of each 

unit. Different from the sophisticated photoactivation model44, we simply let the emitters with 

predefined density be randomly activated, and the probability of on-state emitters appear in the 

next frame follows a simple binomial distribution since only three consecutive images are used 

in each unit. The emitter positions are randomly placed in the entire FOV. The photon of each 
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emitter is evenly drawn from a predefined range, which could be adjusted with different dyes 

and excitation intensity. The aberration coefficients of each emitter are indexed according to its 

lateral position.  

In addition, considering the potential measurement error of PSF calibration and the 

sample induced aberrations, the network may be overfitted to a biased model different from the 

real experimental data, leading to artifacts in the reconstruction. Therefore, we gave more 

freedom to the PSF simulator by adding small random Zernike aberrations to each single 

molecule in the training data. To this end, we added each field dependent Zernike coefficient 

with an additional zero mean normal distributed value with a standard deviation of λ/100. We 

found this helped the network perform much better when models were mismatched (Extended 

Data Fig. 4).  

In real biological specimens, the background is spatially variant due to nonspecific 

labeling or autofluorescence from different structures of samples27. Training the network with 

constant background is prone to misrecognize the structured background as dim, large-defocus 

emitters (Supplementary Fig. 5). To solve this problem, we added random non-uniform 

background to the training data and found this improved detection accuracy a lot in experiments. 

We choose Perlin noise with a principal frequency of 64 image pixels and an octave number of 

1 to mimic the non-uniform background45. The frequency and octave number are empirically 

chosen as we found it ran well on our experimental images. 

Both EMCCD and sCMOS based training data were simulated. To simulate the EMCCD 

camera noise, we incorporated the same noise model as SMLM challenge29. The noise model 

mainly consists of the shot noise, electron multiplication noise and camera readout noise. For 

the sCMOS camera, there is no electron multiplication process. Therefore, only the Poisson 

shot noise and Gaussian readout noise were considered. Although it should be noted that the 

gain, offset and readout noise of sCMOS camera are pixel-dependent, we found using simple 

constants is enough as the pixel variant noise is quite small and did not affect the result too 

much (Supplementary Fig. 14). 

Optical setups for large FOV  

In this work, high-throughput SMLM imaging was performed at room temperature (24 ℃) on 

a custom-built microscope (Extended Data Fig. 10). We combined a laser box with a multi-

mode fiber (WFRCT200x200/230x230/440/620/1100N, NA=0.22, CeramOptec)  to deliver 

homogeneous illumination to the sample8. Single-mode fiber (P3-405BPM-FC-2, Thorlabs) 

excitation for total internal reflection fluorescence (TIRF) imaging can also be achieved with a 

flip mirror (KSHM40/90, Owis). The multi-mode fiber was bound with a vibrator to reduce the 
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laser speckle46. The lasers were triggered by a field-programmable gate array (Mojo, Embedded 

Micro), allowing microsecond pulsing control of lasers. The illumination beam was filtered by 

a laser clean-up filter (ZET405/488/561/640xv2, Chroma) to remove fiber-induced 

fluorescence. The excitation laser was then reflected by a main dichroic 

(ZT405/488/561/640rpcxt-UF2, Chroma) before entering the objective for sample illumination. 

Sample fluorescence was collected by a high NA objective (NA 1.5, UPLAPO 100XOHR or 

NA 1.35, UPLSAPO 100XS, Olympus) and then filtered by a quad-band emission filter 

(ZET405/488/561/640mv2, Chroma). In this work, NA 1.5 objective was used for astigmatism 

3D imaging, and NA 1.35 objective was used for DMO Tetrapod PSF based 3D imaging. After 

the tube lens (TTL-180-A, Thorlabs), the back focal plane of the objective was imaged onto a 

deformable mirror (DM140A-35-P01, Boston Micromachines) for PSF engineering. Before 

entering the sCMOS camera (PRIME 95B, Teledyne Photometrics), a band-pass filter 

(ET680/40m, Chroma) was inserted to the beam path to reject residual laser light. A 785 nm 

near infrared laser (iBEAM-SMART-785-S, Toptica Photonics) was introduced to the system 

by a dichroic mirror (FF750-SDi02, Semrock) for sample focus stabilization. The reflected laser 

from coverslip was detected by a quadrant photodiode (SD197-23-21-041, Advanced Photonix 

Inc) whose position dependent output voltage was used as feedback to the objective z stage (P-

726.1CD, Physik Instrumente). The software control of the microscope was integrated in 

Micro-Manager with EMU47. Typically, we acquired 50,000-100,000 frames with a 15 ms 

exposure time. 

Sample preparation for imaging of the nuclear pore complex and mitochondria 

Cell culture. COS-7 cells (catalog no. 100040, BNCC) were grown in DMEM (catalog no. 

11995, Gibco) containing 10% (v/v) fetal bovine serum (FBS; catalog no. 10270-106, Gibco), 

100 U/ml penicillin and 100 μg/ml streptomycin (PS; catalog no. 15140-122, Gibco). U2OS 

cells (Nup96-SNAP no. 300444, Cell Line Services) were grown in DMEM (catalog no. 10569, 

Gibco) containing 10% (v/v) FBS, 1× PS and 1× MEM NEAA (catalog no. 11140-050, Gibco). 

Cells were cultured in a humidified atmosphere with 5% CO2 at 37 ℃ and passaged every two 

or three days. Prior to cell plating, high-precision 25-mm-round glass coverslips (no. 1.5H, 

catalog no. CG15XH, Thorlabs) were cleaned by sequentially sonicating in 1 M potassium 

hydroxide (KOH), Milli-Q water and ethanol, and finally irradiated under ultraviolet light for 

30 min. For super-resolution imaging, COS-7 and U2OS cells were cultured on the clean 

coverslips for 2d with a confluency of 50-70%. 

Mouse embryonic stem cells (mESCs) were a subclone of an established ESC line 

originally named E14. mESCs were cultured in feeder-free conditions, using serum/LIF 
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medium containing high-glucose DMEM (HyClone, SH30022.01), 15% fetal bovine serum 

(Gibco, 30044-333), 1× sodium pyruvate (Gibco, 11360070), 1× penicillin-streptomycin 

(Gibco, 15070063), 1× nonessential amino acids (NEAA, Gibco, 11140050), 1× GlutaMAX 

(Gibco, 35050061), 1 mM 2-mercaptoethanol (Sigma, M3148) and leukemia inhibitory factor 

(LIF). All the cells were cultured at 37°C in a humidified atmosphere containing 5% CO2. 

Mycoplasma detection were conducted routinely to ensure mycoplasma-free conditions 

throughout the study. 

Generation of induced neuronal cells from mESCs 

Mouse ESCs were induced into neuronal cells as described previously48,49 with modifications. 

In brief, constitutive expressed rtTA and hygromycin resistance gene and Ngn2-P2A-puro 

driven by Tet-on promoter were transfected into mESCs using Piggybac system. The cells were 

selected with 200 μg/ml hygromycin (Sigma, V900372) for 3-5 days. On day 0, the cells were 

digested and plated (6-well plates, 1× 105 cells/well) on poly-D-lysine/laminin coated 

coverslips in serum/LIF medium. Twelve hours later, the culture medium was replaced with 

N2B27 (1:1 mixture of DMEM/F12 (Gibco, 11320033) and Neurobasal (Gibco, 21103049), 1% 

N2 (Gibco, 17502048), 2% B27 (Gibco, 17504044), 1× sodium pyruvate, 1× penicillin-

streptomycin, 1× NEAA, 1× GlutaMAX, 1 mM 2-mercaptoethanol) containing 5 μM retinoic 

acid (Sigma, R2625) and 2 mg/ml doxycycline (TargetMol, T1687). On day 1, a 24 hours 

puromycin selection (1 mg/ml) period was started. On day 6, Ara-C (2 mM, TargetMol, T1272) 

was added to the medium to inhibit neural stem cell proliferation. After day 2, 50% of the 

medium in each well was exchanged every 2 days, and induced neuronal cells were assayed on 

day 21 in most experiments. 

SNAP-tag labeling of Nup96. To label Nup96, U2OS-Nup96-SNAP cells were prepared as 

previously reported32. Briefly, cells were prefixed in 2.4% paraformaldehyde (PFA) for 30s, 

permeabilized in 0.4% Triton X-100 for 3 min and subsequently fixed in 2.4% PFA for 30 min. 

Then, cells were quenched in 0.1 M NH4Cl for 5 min and washed twice with PBS. To decrease 

unspecific binding, cells were blocked for 30 min with Image-iT FX Signal Enhancer (catalog 

no. I36933, Invitrogen). For labeling, cells were incubated in dye solution (1 μM BG-AF647 

(catalog no. S9136S, New England Biolabs), 1 mM DTT (catalog no. 1111GR005, BioFroxx) 

and 0.5% bovine serum albumin (BSA) in PBS) for 2 h and washed 3 times in PBS for 5 min 

each to remove excess dyes. Lastly, cells were postfixed with 4% PFA for 10 min, washed with 

PBS 3 times for 3 minutes each and stored at 4 ℃ until imaged. 

Mitochondria labeling. Mitochondria sample were prepared as previously described50. Briefly, 

COS-7 cells were fixed with 4% PFA (preheat to 37 ℃ before using) in PBS for 12 min, 
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incubated in permeabilization buffer (0.3% CA-630 (catalog no. I8896, Sigma), 0.05% TX-100, 

0.1% BSA and 1× PBS) for 3 min, and then quenched in 0.1 M NH4Cl for 5 min. After washed 

3 times for 5 minutes each with PBS, cells were blocked in 3% BSA for 60 min. For labeling, 

cells were stained by rabbit anti-Tom20 (catalog no. ab78547, Abcam, 1 mg/ml) with 1:1,000 

dilution in 3% BSA and incubated overnight at 4 ℃ and washed 3 times for 5 minutes each 

with PBS. Cells were then stained with the corresponding secondary antibodies conjugated with 

AF647 (catalog no. A21245, Invitrogen, 2 mg/ml) with 1:2,000 dilution in 3% BSA for 2 h and 

washed with PBS. Finally, cells were postfixed with 4% PFA for 10 min, washed 3 times for 5 

minutes each with PBS and stored in PBS at 4 ℃. 

Neuronal cells labeling. Neuronal sample were labeled according to Ref. 51. Briefly, cultured 

mESCs induced neuronal cells were fixed between 21 - 25 days in vitro using 4% PFA (preheat 

to 37 ℃ before using) in PBS for 30 min and washed three times in PBS. The cells were then 

permeabilized with 0.15% Triton X-100 in PBS for 10 min. After washed 3 times for 5 minutes 

each with PBS, cells were blocked in 3% BSA for 60 min. For labeling, cells were incubated 

in mouse anti-βII spectrin (catalog no. 612563, BD Biosiences, 250 μg/ml) with 1:100 dilution 

in 3% BSA, incubated overnight at 4 ℃ and washed 3 times for 5 minutes each with PBS. Cells 

were then stained with secondary antibodies goat anti-mouse IgG conjugated AF647 (catalog 

no. A21235, Invitrogen, 2 mg/ml) with 1:800 dilution in 3% BSA for 2 h and washed with PBS 

3 times for 5 minutes each. Finally, cells were postfixed with 4% PFA for 20 min, washed 3 

times for 5 minutes each with PBS and stored in PBS at 4 ℃ before imaging. 

Imaging Buffer. Samples were imaged in refractive index matching buffer including 50 mM 

Tris-HCl (pH 8.0), 10 mM NaCl, 10% (w/v) glucose, 0.5 mg/ml glucose oxidase (G7141, 

Sigma), 40 μg/ml catalase (C100, Sigma), 35 mM cysteamine and 28.5% (v/v) 2,2'-

thiodiethanol (166782, Sigma). The refractive index of the final imaging buffer is 1.406. 

 

Statistics and reproducibility 

Figures show representative data from 3 (Fig. 4, Extended Data Fig. 7, Supplementary Figure 

3, Supplementary Figure 4, Supplementary Figure 7) or 7 (Fig. 5, Extended Data Fig. 9, 

Supplementary Figure 8) or 2 (Extended Data Fig. 8) independent experiments. 
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Extended Data figure 

 
Extended Data Fig. 1 | Uniform illumination of large FOV. a, Full frame (1608 ×1608 pixels) 

imaging of BG-AF647 dye solution (S9136S, New England Biolabs, 1:1000 dilution from stock 

in Milli-Q water) on coverslip. b, Intensity profile of the yellow dashed line in a. c, Example 

image of beads (T7279, Invitrogen, TetraSpeck) on coverslip (defocused by 300 nm) under 

uniform illumination. d, Zoomed image of the yellow rectangle indicated in c. Scale bars, 20μm. 
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Extended Data Fig. 2 | Comparison of experimental and fitted PSF models across the FOV.  

Experiment and fitted astigmatism PSF models (a-e) and DMO Tetrapod PSF models (f-j) 

acquired from different positions in the full frame image (1608×1608 pixels). a1, Fitted pupil 

function of bead stacks locate at the left top position (79, 136). a2, Comparison of the 

experimental and fitted PSF model within ± 600 nm axial range. b-e are the same as a, but with 

different locations: b right top (1417, 22); c left bottom (246, 1588); d right bottom (1439, 

1503); e middle (812, 805). f-j are experiment and fitted DMO Tetrapod PSF models within ± 

3 μm axial range acquired from different positions: f left top (139, 75); g right top (1329, 206); 

h left bottom (177, 1422); i right bottom (1444, 1577); j middle (855, 810). Scale bars, 1 µm.  
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Extended Data Fig. 3 | FD-DeepLoc architecture. a, Overall network architecture of FD-

DeepLoc. Similar to the DECODE network, FD-DeepLoc contains two U-Nets as indicated by 

the gray box. For each input frame, features will be extracted by the frame analysis module and 

then concatenated together to the temporal context module. Finally, a ten-channel map will be 

output to form the emitter predictions of each frame. The output of each layer is depicted with 

colorful blocks, where h and w represent the height and width of the channels. b, CoordConv 

channels. The CoordConv layer is placed in the first convolution layer of each module and has 

two convolution operations. One convolution (3 × 3) is operated on the input image. The other 

one (1 × 1) is operated on two coordinate channels. The results are then added as the output of 

the Coordconv layer.  
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Extended Data Fig. 4 | Effects of PSF model mismatch between training and test dataset. 

The training dataset is generated by PSF model with astigmatism aberration. Reconstructed 

images for test data using PSF models with astigmatism aberration (a, b, c), astigmatism plus 

spherical aberration (d, e, f) and astigmatism plus spherical and coma aberration (g, h, i) are 

shown. The performance of network with different loss function are compared: original 

DECODE loss function (a, d, g), original DECODE loss function plus cross entropy term (b, 

e, h) and original DECODE loss function plus cross entropy term and robust training (c, f, i). 

For robust training, small random aberrations were added (Methods). The signal to background 

ratio for test data is set as 5500 average photons per emitter (sampled from a uniform 

distribution within [1000, 10000]) and 50 background photons per pixel. The rms wavefront 

error of spherical aberration and coma aberration are both set as 20 nm (λ = 660 nm). The 
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ground truth coordinates are taken from the SMLM challenge training dataset MT029. Scale bar, 

2 µm.  
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Extended Data Fig. 5 | Comparison of localization accuracy for single molecules with field 

dependent aberrations analyzed by FD-DeepLoc and DECODE. a, Localization accuracy 

of a left top single molecule at different axial positions analyzed by FD-DeepLoc and DECODE. 

Both networks were trained using the same training data containing all spatially variant PSFs. 

The bottom panel of a shows the corresponding 3D PSF. b-e are the same as a, but at different 
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locations:  b right top; c left bottom; d right bottom; e middle. The data is simulated using the 

aberration maps in Supplementary Fig. 6. 5,000 photons and 50 background were used for 

each single molecule. 3,000 single-emitter images are generated with random x, y positions at 

each axial position (x, y is random within a pixel, z is random within a 50 nm step, r.m.s.e is 

averaged over 50 nm bins).
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Extended Data Fig. 6 | FD-DeepLoc enables large FOV 3D super-resolution imaging of 

nuclear pores with high fidelity. a, Overview of the panoramic 3D super-resolution image of 

Nup96-SNAP-Alxea Fluor 647. b, Top views of the NPCs reconstructed with FD-DeepLoc, 

DECODE and Cspline. b1, Zoomed view of the region indicated by the white dashed box in a. 

b2, b3 and b4 are the zoomed images of the rectangle region indicated in b1 reconstructed by 

FD-DeepLoc, DECODE and Cspline separately. c, Side view images of the region bounded by 

the 500 nm dashed lines in b1 reconstructed by FD-DeepLoc, Cspline and DECODE separately. 

Representative results are shown from 3 experiments. Scale bars, 50 μm (a), 5 μm (b1,) and 1 

μm (b2, c1). 
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Extended Data Fig. 7 | Performance of FD-DeepLoc on 3D astigmatism imaging of 

mitochondria in a large FOV. a, Overview of the panoramic 3D super-resolution image of 

immunolabeled TOM 20 in mitochondria. b1, c1, Zoomed images of the center and marginal 

areas as indicated by the dashed boxes b, c in a. b2, b3, Side-view cross-section of the region 

bounded by the dashed lines in b1 reconstructed by FD-DeepLoc and Cspline, separately. c2, 

c3 the same as b2, b3, but for the region bounded by the dashed lines in c1. 

Representative results are shown from 2 experiments. Scale bars, 50μm (a), 10μm (b1, c1) and 

1μm (b2, c2). 
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Extended Data Fig. 8 | FD-DeepLoc enables large FOV whole cell 3D super-resolution 

imaging of NPC. a, Overview of the panoramic whole cell 3D super-resolution image of NPC.  

b, Different axial sections of a. b1-3 are top views of axial range of (0 μm - 2 μm), (2 μm - 3 

μm) and (3 μm – 5 μm), respectively. c, Magnified views of areas denoted by box c in a. c1, 

Top view of the box c area denoted in a. c2, Side-view cross-section of region denoted by the 

dashed line in c1. c3-4 are zoomed views of the top and bottom surface of the boxed area 

denoted in c1. d, Same as c for magnified views of region denoted by box d in a. e, The 

distribution of the fitted radii of the NPCs for the cell in c. e1 and e2 are for the top and bottom 

nucleus surface, respectively. f is the same as e, but for the cell in d. 

Representative results are shown from 7 experiments. Scale bars, 50 μm (a, b1), 5 μm (c1, c2, 

d1, d2) and 1 μm (c3, d3).  
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Extended Data Fig. 9 | Quantitative analysis of whole cell 3D super-resolved mitochondria 

images. a, Overview of 16 full frame images of whole cell 3D super-resolved mitochondria. b, 

Magnified angled views of 3 representative cells denoted by the boxes in a. c,. Color indicates 

the categorization results. d, Quantitative analysis of mitochondria morphology and network 

connectivity using Mitochondria Analyzer36. The boxplots illustrate the median (horizontal red 

lines in each box), interquartile range (extent of each box), adjacent values (vertical extending 

lines denote the most extreme values within 1.5 interquartile range), notch (the variability of 

the median) and outlier values (purple circle) for each group of shape parameters. n.s., not 

significant. **P<0.01, *** P<0.001, and ****P<0.0001 (one-way ANOVA with Sidak post 

hoc test). Statistical significance was set at a threshold of P<0.05. Scale bars, 50 μm (a) and 10 

μm (b1).  
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Extended Data Fig. 10 | Layout of custom-built microscope used for this study. M: mirror, 

DiM: dichroic mirror, FM: flip mirror, L: lens, TS: translation stage, FC: fiber coupler, MM 

fiber: multi-mode fiber, SM fiber: single-mode fiber, AP: aperture, BFP: back focal plane, FW: 

filter-wheel, TBL: tube lens, QPD: quadrant photodiode, DM: deformable mirror. a, Optical 

path of the microscope. Our setup has two excitation options: single-mode (SM) excitation and 

multi-mode (MM) excitation. In this work, we mainly use the MM mode for large FOV 

excitation. Excitation lasers are firstly reflected by dichroic mirrors DiM1-DiM3 (DMLP 

425/505/605, Thorlabs) and then coupled by lens L1 into a multi-mode fiber (WFRCT200x200-

230x230-440-620-1100N, NA = 0.22, CeramOptec). The fiber is bound with a vibrator to 

generate a homogeneous illumination 8,46. There are two imaging paths for the fluorescence 

detection which is separated by a flip mirror FM3. In the reflection path of FM3 (KSHM90, 

Owis), cylindrical lens (LJ1516L1-A, Thorlabs) based astigmatism 3D super-resolution 

imaging was performed. For the other imaging path without FM3, DM engineered PSFs were 

used for 3D super-resolution imaging. The focal length for each lens: L1 (f = 19 mm, Ø0.5 

inch), L2 (f = 75 mm, Ø1 inch), L3 (PLN 10X/NA0.25, Olympus), L4(f = 400 mm, Ø1 inch), 

L5 (f = 35 mm, Ø1 inch), L6 (f = 400 mm, Ø75 mm), L7 (f = 400 mm, Ø75 mm), TBL (f = 180 

mm, TTL180-A, Thorlabs), L8 (f = 150 mm, Ø2 inch), L9 (f = 150 mm, Ø2 inch), L10 (f = 75 

mm, Ø1 inch), L11 (f = 150 mm, Ø2 inch), L12 (f = 150 mm, Ø2 inch), L13 (f = 1000 mm, 

LJ1516L1-A, Thorlabs). b, The rendered mechanical design using SolidWorks (Dassault 

Systèmes). Inset is the ray-tracing diagram of the imaging path rendered in OpticStudio 

(Zemax). 
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