Homer tetramer promotes actin bundling activity of drebrin
2019.01.02Li, Z., Liu, H., Li, J., Yang, Q., Feng, Z., Li, Y., ... & Zhang, M. (2019). Structure, 27(1), 27-38.
Drebrin is an actin bundling protein that plays critical roles in synaptic spine development and plasticity. Homer, one of the most abundant scaffolding proteins in postsynaptic density, interacts with Drebrin's C-terminal PPXXF motifs using its Ena/VASP homology 1 (EVH1) domain. However, the molecular mechanism and biological function of this interaction remain unclear. Here we show that Homer specifically binds to the first but not the second PPXXF motif in Drebrin. The crystal structure of Drebrin-Homer binding motif 1 in complex with Homer EVH1 reveals a consensus Homer EVH1 binding motif. Homer tetramer promotes actin bundling activity of Drebrin in vitro and stimulates Drebrin-induced filopodia formation and elongation in cells. We further show that monomeric Homer1a antagonizes Homer1b in promoting Drebrin-stimulated actin bundling. Our study suggests a potential regulatory role of Homer1 in modulating excitatory synaptic spine homeostatic scaling via binding to Drebrin.
- Recommend
-
2024-10-08
New targets and designed inhibitors of ASAP Arf-GAPs derived from structural characterization of the ASAP1/440-kD ankyrin-B interaction
-
2024-06-18
CaMKII autophosphorylation is the only enzymatic event required for synaptic memory.
-
2024-06-15
AIDA-1/ANKS1B Binds to the SynGAP Family RasGAPs with High Affinity and Specificity.
-
Demixing is a default process for biological condensates formed via phase separation
-
Short-distance vesicle transport via phase separation.